SUBJECT INDEX

Acetyl phosphate		II (Schäfer) (172)	334
Activation of Ca ²⁺ uptake by ——— in		Caffeine	
muscle microsomes (De Meis) (172) 3	343	Inhibition of sarcotubular calcium	
cis-Aconityladenylate		transport by: Species and tem-	
Stability and thermodynamic para-		perature dependence (Fuchs) (172)	566
meters of ——— (Ozawa) (172)	r	Calcium transport	•
Actin		Inhibition of sarcotubular — by	
Divalent cation bound to and		caffeine: Species and temperature de-	
thin filament (Kasai) (172) 1	171	pendence (Fuchs) (172)	566
F-Actin	•	Calcium uptake	•
Behaviour of divalent cations and nu-		Activation of ——— by acetyl phos-	
cleotides bound to ——— (Kasai,		phate in muscle microsomes (De Meis)	
Oosawa) (172) 3	300	(172)	343
F-Actin-heavy meromyosin		Calcium uptake	5 15
Physicochemical studies of ——— so-		Stabilization of cardiac microsomal	
lutions (Tawada) (172) 3	311	— by hypertonic sucrose solutions	
Acyl anhydrides		(Repke, Katz) (172)	348
Conservation of oxidative energy in		Carbon monoxide	0 1
phosphate-free systems. Formation of			
— via the oxidation of hydro-		(Mok et al.) (172)	438
quinone monocarboxylic esters (Tha-		β-Carboxylation photosynthesis	
nassi, Cohen) (172) 3	389	and photorespiration in higher	
Anabaena variabilis	, -	plants (Osmond) (172)	144
Properties and structure of fractions		Carotenoids	• • •
prepared from ——— by the action of		Energy transfer from ——— to chloro-	
Triton X-100 (Ogawa et al.) (172) 2	216	phyll in blue-green, red and green algae	
Anion transport		and greening bean leaves (Goedheer)	
Light-dependent — in isolated		(172)	252
spinach chloroplasts (Deamer, Packer)		Carotenoids	-
(172) 5	539	Light-induced absorbance changes of	
Antimycin A		cytochromes and — in a sulphur	
Ectopic inhibition of the complexes of		bacterium containing bacteriochloro-	
the electron transport system by rote-		phyll b (Olson et al .) (172)	338
none, piericidin A, demerol and ———		Carotenoids	
(Teeter et al.) (172) 3	331	Photo-bleaching of ——— related to	
Arsenate uptake		the electron transport in chloroplasts	
Inhibition of phosphate uptake and		(Yamashita $et al.$) (172)	511
— in yeast by monoiodoacetate,		Chlorelle pyrenoidosa	
fluoride, 2,4-dinitrophenol and acetate		Induction of respiratory metabolism in	
(Borst Pauwels, Jager) (172) 3	399	illuminated—— and isolated spinach	
Azoferredoxin		chloroplasts by the addition of vitamin	
Properties of —— purified from ni-		K_5 (Krause, Bassham) (172)	553
trogen-fixing extracts of Clostridium		Chloride	
pasteurianum (Moustafa, Mortenson)		Role of ——— in photosynthesis. I. The	
(172) I	00	chloride requirement of electron trans-	
Bacterial photosynthesis		port (Hind <i>et al.</i>) (172)	277
Nature of the free radical formed during		Chloride	
the primary process of ——— (McElroy	. 0.0	Role of —— in photosynthesis. II.	
et al.) (172) I	.00	The effect of chloride upon fluorescence	
Bacteriochlorophyll b		(Heath, Hind) (172)	290
Light-induced absorbance changes of		Chlorobacteriaceae Quinones of the ———. Properties and	
cytochromes and carotenoids in a sulphur bacterium containing			
	28	possible function (Powls, Redfearn)	420
(Olson et al.) (172) 3 Biguanides		Chlorophyll (172)	429
Site-specific uncoupling and inhibition		Energy transfer from carotenoids to	
of oxidative phosphorylation by ——.		in blue-green, red and green	
1 1 J J			

algae and greening bean leaves (Goedheer) (172) Chlorophyll a fluorescence Control of excitation transfer in photo-	252	bium japonicum. II. Rhizobium haemo- globin, ————————————————————————————————————	88
synthesis. I. Light-induced change of in Porphyridium cruentum	2.12	Light-induced absorbance changes of ——— and carotenoids in a sulphur	
(Murata) (172) Chlorophyll a-protein complex Comparison of a ———— isolated from	242	bacterium containing bacteriochloro- phyll b (Olson et al.) (172) Cytochrome c-lipid	338
a blue-green alga with chlorophyll- protein complexes obtained from green		Proteolipids. V. The activity of ———————————————————————————————————	417
bacteria and higher plants (Thornber) (172)	230	Cytochrome P890 and P800 Light-induced reactions of ——— in	
Chloroplasts Delayed light studies on photosynthetic		the purple photosynthetic bacterium Rhodospirillum rubrum (Sybesma) (172)	177
energy conversion. II. Effect of electron		Cytochrome oxidase	
acceptors and phosphorylation co- factors on the millisecond emission		—— and derivatives. IX. Spectro- photometric studies on the rapid re-	
from ——— (Bertsch <i>et al.</i>) (172)	525	action of ferrous cytochrome c oxidase	
Chloroplasts	3 3	with molecular oxygen under con-	
Enhancement of emission from —		ditions of complete and partial oxy-	
at 698 nm by a naturally-occurring	240	genation (Gilmour et al.) (172)	37
factor (Brody et al.) (172) Chloroplasts	340	Demerol Ectopic inhibition of the complexes of	
Fractionation of spinach — with		the electron transport system by rote-	
sodium deoxycholate (Bril et al.) (172)	345	none, piericidin A, ——— and anti-	
Chloroplasts		mycin A (Teeter et al.) (172)	331
Induction of respiratory metabolism in illuminated <i>Chlorella pyrenoidosa</i> and		Digitonin particles Energy-linked reactions in ——— from	
isolated spinach—— by the addition		beef heart mitochondria (Haas, Gray)	
of vitamin K ₅ (Krause, Bassham) (172)	553	(172)	571
Chloroplasts		Ectopic inhibition	
Light-dependent anion transport in iso- lated spinach ——— (Deamer, Packer)		transport system by rotenone, piericidin	
Chloroplasts (Ecanos, Facility)	539	A, demerol and antimycin A (Teeter et al.) (172)	221
Light-induced changes in the ionic con-		Electron acceptors	331
tent of — in Pisum sativum (Nobel)		Delayed light studies on photosynthetic	
(172)	134	energy conversion. II. Effect of ———	
Chloroplasts Nicotinamide cofactors of intact ———		and phosphorylation cofactors on the	
isolated on a sucrose density gradient		millisecond emission from chloroplasts (Bertsch <i>et al.</i>) (172)	525
(Harvey, Brown) (172)	116	Electron acceptor	3-3
Chloroplasts		Nature of the primary ——— in bac-	_
Photo-bleaching of carotenoids related to the electron transport in ———		terial photosynthesis (Ke) (172) Electron-transfer reactions	583
(Yamashita et al.) (172)	511	One-—— in biochemical systems. II.	
Chloroplasts	J	The reaction of free radicals formed in	
Potentiometric titration of the fluores-		the enzymic oxidation (Ohnishi et al.)	
cence yield of spinach ——— (Cramer, Butler) (172)	503	Electron-transfer reactions (172)	357
Colpoda steinii	303	One-—— in biochemical systems.	
Electron transport and phospholipase		III. One-electron reduction of quinones	
activity in encysting cells of the ciliate	0	by microsomal flavin enzymes (Iyanagi,	
——— (Tibbs, Marshall) (172) Cytochromes	382	Yamazaki)	370
Electron-transport systems of <i>Rhizo</i> -		Electron transport and phospholipase activity in	
bium japonicum. I. Haemoprotein		encysting cells of the ciliate Colpoda	
P-450, other CO-reactive pigments,		steinii (Tibbs, Marshall) (172)	382
and oxidases in bacteroids from nitrogen-fixing root nodules (Appleby)		Role of Cl ⁻ in photosynthesis. I. The	
(172)	71	Cl ⁻ requirement of —— (Hind <i>et al.</i>)	
Cytochromes	•	(172)	277
Electron-transport systems of Rhizo-		Electron transport in chloroplasts	

592 SUBJECT INDEX

Photo-bleaching of carotenoids related		leaves (Nakajima et al.) (172)	578
to the ——— (Yamashita et al.) (172)	511	Heavy meromyosin	
Electron-transport system		Interaction of ——— with substrate.	
Ectopic inhibition of the complexes of		II. Rate of the formation of ATP-in-	
the —— by rotenone, piericidin A,		duced ultraviolet difference spectrum	
demerol and antimycin A (Teeter et al.)		of heavy meromyosin measured by	
(172)		stopped-flow method (Morita) . (172)	319
Electron-transport systems		Heavy meromyosin-F-actin	
— of Rhizobium japonicum. I.		Physicochemical studies of ——— so-	
Haemoprotein P-450, other CO-reactive		lutions (Tawada) (172)	311
pigments, cytochromes and oxidases in		Hydroquinone monocarboxylic esters	
bacteroids from nitrogen-fixing root		Conservation of oxidative energy in	
nodules (Appleby) (172)	71	phosphate-free systems. Formation of acyl anhydrides via the oxidation of	
Electron-transport systems ———————— of Rhizobium japonicum. II.		—— (Thanassi, Cohen) (172)	280
Rhizobium haemoglobin, cytochromes		Inorganic pyrophosphatase	309
and oxidases in free-living (cultured)		Alkaline ——— of maize leaves (Sim-	
cells (Appleby) (172)	88	mons, Butler) (172)	150
Energy metabolism of platelets		Ion transport	150
Clot retraction and ————. Effect and		Role of sulphydryl groups in oxidative	
mechanism of inhibitors (Mürer) (172)	266	phosphorylation and ———by rat liver	
Energy transfer		mitochondria (Haugaard et al.) . (172)	то8
—— from carotenoids to chlorophyll		Lipid-cytochrome c	- 30
in blue-green, red and green algae and		Proteolipids. V. The activity of ———	
greening bean leaves (Goedheer) (172)	252	(Sun, Crane) (172)	417
Fatty acid inhibition		Membrane-bound cytochromes	. ,
Light-driven scattering changes and in-		Glucose dehydrogenase of Bacillus	
creased 515 nm absorbance changes as-		megaterium KM. Coupling of the cyto-	
sociated with ——— of photosynthesis		plasmic enzyme with ——— (Broberg	
in Chlorella (Hiller) (172)	546	et al.) (172)	205
Flavin enzymes		Membrane potential	
One-electron-transfer reactions in bio-		Direction of polarity of the mitochon-	
chemical systems. III. One-electron re-		drial trans-—— (Harris, Pressman)	
duction of quinones by microsomal		(172)	66
(Iyanagi, Yamazaki) (172) 3	370	Micrococcus dinitrificans	
Free radicals		Aerobic and anaerobic respiration in	
One-electron-transfer reactions in bio-		——— (Lam, Nicholas) (172)	450
chemical systems. II. The reaction of		Microsomal calcium uptake	
—— formed in the enzymic oxidation		Stabilization of cardiac by	
(Ohnishi $et al.$) (172)	357	hypertonic sucrose solutions (Repke,	- 0
Glucose dehydrogenase		Katz) (172)	348
of Bacillus megaterium KM.		Microsomal flavin enzymes	
Coupling of the cytoplasmic enzyme		One-electron-transfer reactions in bio-	
with membrane-bound cytochromes	205	chemical systems. III. One-electron re-	
(Broberg et al.) (172) 2	205	duction of quinones by——— (Iyanagi,	270
Glutamate dehydrogenase NAD(P)-linked oxidoreductions and		Yamazaki) (172) Microsomes	3/0
the nicotinamide nucleotide specificity		Activation of Ca ²⁺ uptake by acetyl	
of — in rat liver mitochondria (Papa		phosphate in muscle ——— (De Meis)	
et al.) (172)	20	phosphate in thusele ——— (De Meis)	3/12
Glutamate oxidation		Microsomes	343
in rat liver homogenate (Hoek		Free-radical mechanism by which tri-	
et al.) (172)	107	phenyltetrazolium chloride stimulates	
Haemoproteins		aerobic oxidation of NADPH by——	
Carbon monoxide-reactive — of		(Sato, Iwaizumi) (172)	30
yeast (Mok et al.) (172) 4	438	Mitochondria	
Haemoprotein P-450	-	Acid-soluble nucleotides of beef heart	
Electron-transport systems of Rhizo-		——— (Mansurova, Kulaev) (172)	328
bium japonicum. I. ——, other CO-		Mitochondria	
reactive pigments, cytochromes and		Control of NAD(P)-linked oxidoreduc-	
oxidases in bacteroids from nitrogen-		tions in rat liver ——— (Tager et al.)	
fixing root nodules (Appleby) (172)	71	(172)	7
Haemoprotein 563		Mitochondria	
Soluble ——— isolated from spinach		Determination of the rate of uptake of	

substrates by rat liver ——— (Kraayen-	_	synthesis, V. The mechanism of NAD(P)	
hof et al.) (172)	580	reduction by ——— in the chemoauto-	
Mitochondria		troph Nitrobacter agilis (Sewell, Aleem)	
Energy-linked reaction in digitonin		(172)	467
particles from beef heart ——— (Haas,		Nitrobacter agilis	
Gray) (172)	571	Generation of reducing power in chemo-	
Mitochondria		synthesis. V. The mechanism of NAD(P)	
Inhibitory action of oxaloacetate on		reduction by nitrite in the chemoauto-	
succinate oxidation in rat liver ———		troph — (Sewell, Aleem) (172)	467
and the mechanism of its reversal		Nitrogen-fixing extract	
(Wojtczak) (172)	52	Properties of azoferredoxin purified	
Mitochondria		from — of Clostridium pasteurianum	
Interaction between uncouplers and		(Moustafa, Mortenson) (172)	106
substrates in rat liver ———		Oxaloacetate	
(Kraayenhof, Van Dam) (172)	189	Inhibitory action of —— on suc-	
Mitochondria		cinate oxidation in rat liver mitochon-	
NAD(P)-linked oxidoreductions and		dria and the mechanism of its reversal	
the nicotinamide nucleotide specificity		(Wojtczak) (172)	52
of glutamate dehydrogenase in rat liver		Oxidation	
	20	One-electron-transfer reactions in bio-	
Mitochondria		chemical systems. II. The reaction of	
Role of sulphydryl groups in oxidative		free radicals formed in the enzymic	
phosphorylation and ion transport by		—— (Ohnishi et al.) (172)	357
rat liver ——— (Haugaard <i>et al.</i> (172)	198	Oxidative energy	
Mitochondrial trans-membrane potential		Conservation of ——— in phosphate-	
Direction of polarity of the ———		free systems. Formation of acyl an-	
(Harris, Pressman) (172)	66	hydrides via the oxidation of hydro-	
Myosin		quinone monocarboxylic esters (Tha-	
Binding of ADP to (Kiely,		nassi, Cohen) (172)	389
Martonosi) (172)	158	Oxidative phosphorylation	
NADH		Effect of monovalent cations on ———	
Interaction between ——— and suc-		in submitochondrial particles (Papa	
cinate during simultaneous oxidation		$et \ al.$) (172)	184
by non-phosphorylating submitochon-		Oxidative phosphorylation	
drial particles from bovine heart (Davis		Role of sulphydryl groups in ———	
et al.) (172)	574	and ion transport by rat liver mito-	
NADH dehydrogenase		chondria (Haugaard et al.) (172)	198
Inactivation of lyophilized — from		Oxidative phosphorylation	
Escherichia coli by oxygen (Gutman	_	Site-specific uncoupling and inhibition	
et al.) (172)	462	of — by biguanides. II (Schäfer)	
NAD(P)-linked oxidoreductions		(172)	334
Control of ——— in rat liver mitochon-		Oxygen	
dria (Tager et al.) (172)	7	Inactivation of lyophilized NADH de-	
NAD(P)-linked oxidoreductions		hydrogenase from Escherichia coli by	_
and nicotinamide nucleotide		(Gutman et al.) (172)	462
specificity of glutamate dehydrogenase		Phosphate uptake	
in rat liver mitochondria (Papa et al.)		Inhibition of ——— and arsenate up-	
NAD(D) and at its	20	take in yeast by monoiodoacetate, fluo-	
NAD(P) reduction		ride, 2,4-dinitrophenol and acetate	
Generation of reducing power in chemo-		(Borst Pauwels, Jager) (172)	399
synthesis. V. The mechanism of ——		Phospholipase activity	
by nitrite in the chemoautotroph Nitro-	c.	Electron transport and in en-	
bacter agilis (Sewell, Aleem) (172)	407	cysting cells of the ciliate Colpoda	-0-
NADPH		steinii (Tibbs, Marshall) (172)	302
Free-radical mechanism by which tri-		Phosphorylation cofactors	
phenyltetrazolium chloride stimulates aerobic oxidation of ——— by micro-		Delayed light studies on photosynthetic	
	20	energy conversion. II. Effect of electron	
somes (Sato, Iwaizumi) (172) Nicotinamide cofactors	30	acceptors and——— on the millisecond emission from chloroplasts (Bertsch	
——— of intact chloroplasts isolated		et al.) (172)	525
on a sucrose density gradient (Harvey,		Photorespiration	J#3
Brown) (172)	116	β -Carboxylation photosynthesis and	
Nitrite		—— in higher plants (Osmond) (172)	IAA
Generation of reducing power in chemo-		Photosynthesis (Smond) (1/2/	~ 74
		· J	

594 SUBJECT INDEX

Control of excitation transfer in ———.	—— in cells of Rhodospirillum rubrum	
I. Light-induced change of chloro-	(Edwards, Bovell) (172)	
phyll a fluorescence in Porphyridium	Pyrophosphatase	
cruentum (Murata) (172) 2		
Photosynthesis	leaves (Simmons, Butler) (172)	150
Light-driven scattering changes and in-	Quinones	
creased 515 nm absorbance changes as-	— of Chlorobacteriaceae. Proper-	
sociated with fatty acid inhibition of	ties and possible function (Powls, Red-	
in Chlorella (Hiller) (172) 5		429
Photosynthesis	Quinones	
Nature of the free radical formed during	One-electron-transfer reactions in bio-	
the primary process of bacterial ———	chemical systems. III. One-electron re-	
(McElroy et al.) (172) 10		
Photosynthesis	enzymes (Iyanagi, Yamazaki) . (172)	370
Nature of the primary electron acceptor	Reducing power	
in bacterial ——— (Ke) (172) 5		
Photosynthesis Pole of Cl- in I The Cl- re	sis. V. The mechanism of NAD(P) re-	
Role of Cl ⁻ in ———. I. The Cl ⁻ requirement of electron transport (Hind	duction by nitrite in the chemoauto-	
quirement of electron transport (Hind	troph Nitrobacter agilis (Sewell, Aleem)	.67
et al.) (172) 2. Photosynthesis		407
Role of Cl ⁻ in ———. II. The effect of	Respiration Aerobic and anaerobic ——— in <i>Micro</i> -	
Cl- upon fluorescence (Heath, Hind)	coccus dinitrificans (Lam, Nicholas)	
(172) 20		450
Photosynthetic energy conversion	90 (172) Respiratory metabolism	450
Delayed light studies on ———. II.	Induction of —— in illuminated	
Effect of electron acceptors and phos-	Chlorella pyrenoidosa and isolated spin-	
phorylation cofactors on the millisecond	ach chloroplasts by the addition of	
emission from chloroplasts (Bertsch	vitamin K_5 (Krause, Bassham). (172)	553
et al.) (172) 5:		555
Piericidin A	Dependence of the efficiency of un-	
Ectopic inhibition of the complexes of	couplers on the ——— (Tsou, Van Dam)	
the electron transport system by rote-	(172)	174
none, ———, demerol and antimycin A	Rhizobium haemoglobin	′ '
(Teeter et al.) (172) 3		
Platelets	bium japonicum. II. ——, cyto-	
Clot retraction and energy metabolism	chromes and oxidases in free-living	
of Effect and mechanism of in-	(cultured) cells (Appleby) (172)	88
hibitors (Mürer) (172) 20		
Porhyridium cruentum	Electron-transport systems of ———.	
Control of excitation transfer in photo-	I. Haemoprotein P-450, other CO-re-	
synthesis. I. Light-induced change of	active pigments, cytochromes and oxi-	
chlorophyll a fluorescence in ———	dases in bacteroids from nitrogen-fixing	
(Murata) (172) 2.	root nodules (Appleby) (172)	71
Protein-chlorophyll a complex	Rhizobium japonicum	
Comparison of a ——— isolated from	Electron-transport systems of ———.	
a blue-green alga with chlorophyll-	II. Rhizobium haemoglobin, cyto-	
protein complexes obtained from green		
	chromes and oxidases in free-living	
bacteria and higher plants (Thornber)	(cultured) cells (Appleby) (172)	88
bacteria and higher plants (Thornber) (172) 2;	(cultured) cells (Appleby) (172) 30 Rhodopseudomonas viridis	88
bacteria and higher plants (Thornber) (172) 2; Proteolipids	(cultured) cells (Appleby) (172) Rhodopseudomonas viridis Isolation of the reaction center of ———	
bacteria and higher plants (Thornber) (172) 2 Proteolipids V. Activity of lipid-cyto-	(cultured) cells (Appleby) (172) Rhodopseudomonas viridis Isolation of the reaction center of —— (Thornber et al.) (172)	
bacteria and higher plants (Thornber) (172) 2. Proteolipids	(cultured) cells (Appleby) (172) Rhodopseudomonas viridis Isolation of the reaction center of (Thornber et al.) (172) Rhodospirillum rubrum	
bacteria and higher plants (Thornber) (172) 2: Proteolipids ——. V. Activity of lipid-cyto- chrome c (Sun, Crane) (172) 4: Protochlorophyll pigments	(cultured) cells (Appleby) (172) Rhodopseudomonas viridis Isolation of the reaction center of —— (Thornber et al.) (172) Rhodospirillum rubrum Characteristics of a light-dependent	
bacteria and higher plants (Thornber) (172) 2: Proteolipids ——. V. Activity of lipid-cyto- chrome c (Sun, Crane) (172) 4: Protochlorophyll pigments Optical properties of the ——. I. Iso-	(cultured) cells (Appleby) (172) Rhodopseudomonas viridis Isolation of the reaction center of —— (Thornber et al.) (172) Rhodospirillum rubrum Characteristics of a light-dependent proton transport in cells of ——— (Ed-	351
bacteria and higher plants (Thornber) (172) 2: Proteolipids ——. V. Activity of lipid-cyto- chrome c (Sun, Crane) (172) 4: Protochlorophyll pigments Optical properties of the ——. I. Iso- lation, characterization, and infrared	(cultured) cells (Appleby) (172) Rhodopseudomonas viridis Isolation of the reaction center of (Thornber et al.) (172) Rhodospirillum rubrum Characteristics of a light-dependent proton transport in cells of — (Edwards, Bovell) (172)	351
bacteria and higher plants (Thornber) (172) 2: Proteolipids ——. V. Activity of lipid-cytochrome c (Sun, Crane) (172) 4: Protochlorophyll pigments Optical properties of the——. I. Isolation, characterization, and infrared spectra (Houssier, Sauer) (172) 4:	(cultured) cells (Appleby) (172) Rhodopseudomonas viridis Isolation of the reaction center of (Thornber et al.) (172) Rhodospirillum rubrum Characteristics of a light-dependent proton transport in cells of (Edwards, Bovell) (172) Rhodospirillum rubrum	351
bacteria and higher plants (Thornber) (172) 23 Proteolipids ——. V. Activity of lipid-cytochrome e (Sun, Crane) (172) 43 Protochlorophyll pigments Optical properties of the ——. I. Isolation, characterization, and infrared spectra (Houssier, Sauer) (172) 43 Protochlorophyll pigments	(cultured) cells (Appleby) (172) Rhodopseudomonas viridis Isolation of the reaction center of ——— (Thornber et al.) (172) Rhodospirillum rubrum Characteristics of a light-dependent proton transport in cells of ——— (Edwards, Bovell) (172) Rhodospirillum rubrum Light-induced reactions of cytochrome	351
bacteria and higher plants (Thornber) (172) 2: Proteolipids	(cultured) cells (Appleby) (172) Rhodopseudomonas viridis Isolation of the reaction center of —— (Thornber et al.) (172) Rhodospirillum rubrum Characteristics of a light-dependent proton transport in cells of —— (Edwards, Bovell) (172) Rhodospirillum rubrum Light-induced reactions of cytochrome P890 and P800 in the purple photosyn-	351
bacteria and higher plants (Thornber) (172) 2: Proteolipids —. V. Activity of lipid-cyto- chrome ɛ (Sun, Crane) (172) 4: Protochlorophyll pigments Optical properties of the —. I. Iso- lation, characterization, and infrared spectra (Houssier, Sauer) (172) 4: Protochlorophyll pigments Optical properties of the —. II. Electronic absorption, fluorescence, and	(cultured) cells (Appleby) (172) Rhodopseudomonas viridis Isolation of the reaction center of —— (Thornber et al.) (172) Rhodospirillum rubrum Characteristics of a light-dependent proton transport in cells of —— (Edwards, Bovell) (172) Rhodospirillum rubrum Light-induced reactions of cytochrome P890 and P800 in the purple photosynthetic bacterium —— (Sybesma)	35I 126
bacteria and higher plants (Thornber) (172) 2: Proteolipids —. V. Activity of lipid-cyto- chrome c (Sun, Crane) (172) 4: Protochlorophyll pigments Optical properties of the —. I. Iso- lation, characterization, and infrared spectra (Houssier, Sauer) (172) 4: Protochlorophyll pigments Optical properties of the —. II. Electronic absorption, fluorescence, and circular dichroism spectra (Houssier,	(cultured) cells (Appleby) (172) Rhodopseudomonas viridis Isolation of the reaction center of —— (Thornber et al.) (172) Rhodospirillum rubrum Characteristics of a light-dependent proton transport in cells of —— (Edwards, Bovell) (172) Rhodospirillum rubrum Light-induced reactions of cytochrome P890 and P800 in the purple photosynthetic bacterium —— (Sybesma)	35I 126
bacteria and higher plants (Thornber) (172) 2: Proteolipids —. V. Activity of lipid-cyto- chrome ɛ (Sun, Crane) (172) 4: Protochlorophyll pigments Optical properties of the —. I. Iso- lation, characterization, and infrared spectra (Houssier, Sauer) (172) 4: Protochlorophyll pigments Optical properties of the —. II. Electronic absorption, fluorescence, and	(cultured) cells (Appleby) (172) Rhodopseudomonas viridis Isolation of the reaction center of —— (Thornber et al.) (172) Rhodospirillum rubrum Characteristics of a light-dependent proton transport in cells of —— (Edwards, Bovell) (172) Rhodospirillum rubrum Light-induced reactions of cytochrome P890 and P800 in the purple photosynthetic bacterium —— (Sybesma)	35I 126

piericidin A, demerol and antimycin A (Teeter et al.) (172) Spinach chloroplasts Fractionation of —— with sodium deoxycholate (Bril et al.) (172)	Triphenyltetrazolium chloride Free-radical mechanism by which	2			
Spinach leaves Soluble haemoprotein 563 isolated from ——— (Nakajima et al.) (172)	NADPH by microsomes (Sato, Iwaizumi) (172) 30)			
Submitochondrial particles Effect of monovalent cations on oxidative phosphorylation in ——— (Papa	Dependence of the efficiency of ——on the respiratory rate (Tsou, Van Dam) (172) 174	1			
et al.) (172) Submitochondrial particles Interaction between NADH and succinate during simultaneous oxidation by non-phosphorylating — from bovine heart (Davis et al.) (172)	Interaction between — and substrates in rat liver mitochondria (Kraayenhof, Van Dam) (172) 189 Uncoupling Site-specific — and inhibition of	•			
Succinate Interaction between NADH and——— during simultaneous oxidation by non- phosphorylating submitochondrial par- ticles from bovine heart (Davis et al.) (172)	oxidative phosphorylation by biguanides. II (Schäfer) (172) 332 Vitamin K ₅ Induction of respiratory metabolism in illuminated <i>Chlorella pyrenoidosa</i> and	1			
Succinate oxidation Inhibitory action of oxaloacetate on ————————————————————————————————————	dition of ——— (Krause, Bassham) (172) 553	3			
ACTA may be of interest to the readers of the BBA-BIOMEMBRANES The movement of H ⁺ and other ions at the	peared in other sections of BIOCHIMICA ET BIOPHYSICA his specialized section: conset of photosynthesis in ulva (BBA 75241)				
Respiration and energy-dependent movemer carrot root cells (BBA 75237)	B. E. Vaughan (San Francisco, Calif.) 173 (1969) 198 ents of chloride at plasmalemma and tonoplast of				
BBA-PROTEIN STRUCTURE					
A correlation between spin states and light-absorption spectra of ferric lamprey hemoglobin at room and low temperature (BBA 35331) by N. M. RUMEN AND B. CHANCE (Augusta, Ga. and Philadelphia, Pa.) . 175 (1969) 242 The oxygen equilibria and aggregation behavior of polymerizing mouse hemoglobins (BBA 35339)					
by A. RIGGS AND M. RONA (Austin, The preparation of tropomyosin and tropomyosin	Texas)				
Studies on troponin (BBA 35326)	LLER (Pittsburgh, Pa.)				
Large-scale isolation of phytochrome from					
BBA-ENZYMOLOGY	175 (1909) 409	,			
The intracellular and intramitochondrial propionyl-CoA carboxylase in rat liv	BERT (East Lansing, Mich.) 178 (1969) 11 distribution of malonyl-CoA decarboxylase and	7			